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WHAT FACTORS limit the reliability of neuronal re-
sponses to a given stimulus, and to what degree?

The answers to these questions are of fundamental
importance in neurobiology, because the reliability of
neurons will constrain the nature of the computational
mechanisms available to the brain1–6. The discussion in
this article is confined to a particular aspect of this com-
plex set of issues that can be addressed biophysically:
what impact does ‘channel noise’, which is generated by
the random gating of voltage-gated ion channels, have
on the reliability and dynamics of single neurons? Evi-
dence will be discussed in support of the hypothesis
that channel noise has measurable effects under normal
conditions. Novel ways to magnify the effects of chan-
nel noise for clinical gain will be reviewed, as will the
potential impact of channel noise on the cellular meta-
bolic ‘economy’. The role(s) of noise from other sources
(for example, synaptic processes – see Box 1) will not be
covered in detail. This decision was made not to deny
the importance of synaptic noise, which is certainly a
major source of neuronal variability, but rather in
recognition of the fact that the precise impact of synap-
tic noise can be evaluated only once channel noise is
understood and quantified. The need for a precise,
mechanistic understanding in this endeavor is particu-
larly acute because both channel and synaptic noise
sources exhibit voltage dependence, which makes their
interactions difficult to understand intuitively.

Quantifying channel noise

It has been suspected since the time of Hodgkin and
Huxley, and known with certainty since the landmark
single-channel recordings of Neher, Sakmann and col-

leagues, that voltage-gated ion channels are stochastic
devices. Typically, these noisy molecular devices are
modeled using chemical-reaction schemes with a lim-
ited number of states and rate constants that depend on
voltage alone7. Other modeling approaches allow rate
constants to depend on both voltage and the amount
of time each channel has spent in a given state8.

Regardless of which model structure best captures
the essence of voltage-gated channels, it is clear that
their probabilistic gating adds noise to the total mem-
brane current in the cell. For traditional descriptions of
ion channels, the current generated by a homogeneous
population of ion channels is readily quantifiable under
voltage-clamp conditions7,9. Under steady-state voltage
clamp, the population current has mean I- and variance
sI

2 given by the equations:

I- 5 gNp(V) (V 2 Vrev) (1)

sI
2 5 g2Np(V) [1 2 p(V)] [V 2 Vrev] (2)

where g is open-channel conductance, N is the number
of channels, V is membrane potential, p(V) is the (steady-
state) voltage-dependent probability that each channel is
open, and Vrev is the reversal potential. A useful param-
eter for quantifying the noisiness of current generated by
a population of channels is the coefficient of variation
(CV), the ratio of standard deviation to mean:

(3)

Equation 3 implies that the noisiness of a membrane
current declines in proportion to the square root of the
number of channels.

   
CV

I
p V

Np V
I= = −s 1 ( )

( )

Channel noise in neurons
John A. White, Jay T. Rubinstein and Alan R. Kay

The probabilistic gating of voltage-dependent ion channels is a source of electrical ‘channel noise’
in neurons.This noise has long been implicated in limiting the reliability (repeatability) of neuronal
responses to repeated presentations of identical stimuli. More recently, it has been shown to
increase the range of spiking behaviors exhibited in some neural populations. Channel numbers
are tied to metabolic efficiency and the stability of resting potential, and channel noise might be
exploited by future cochlear implants in order to improve the temporal representation of sound.
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With very few exceptions, the single-neuron model-
ing community makes the implicit assumption, which
is embedded in their choice of Hodgkin–Huxley-type
models, that the random behavior of a population of
voltage-gated channels can be ignored. This decision
can be made by assumption (that N is a very large num-
ber or that synaptic noise is so large that it dominates the
neuronal response), or by simple oversight. Such model
formulations give deterministic responses, although they
allow the possibilities of chaotic responses (that is, re-
sponses that are very sensitive to initial conditions) or
noisy responses that reflect the random behavior of syn-
aptic input. The evidence supporting another view, in
which the random behavior of voltage-gated ion chan-
nels is sufficient to alter neuronal input–output relation-
ships and intrinsic dynamics, is reviewed in this article.

How large is large?

It is commonly assumed that, at the cellular level,
conductances should be essentially deterministic
because their size (~1–10 nS for a mammalian neuron)

exceeds the conductance of single channels (1–100 pS)
by two to four orders of magnitude. Surely one should
be able to ignore random fluctuations in a population
of tens of thousands of channels.

Perhaps surprisingly, the answer to this question is
‘no’ in many cases. Early evidence to support this asser-
tion came over 60 years ago, when Pecher demonstrated
that neurons do not exhibit a precise threshold10. If the
probability of firing in response to a brief current pulse
is estimated as a function of input amplitude, the result-
ing curves do not show a step-like transition to unity
firing, as do the classical Hodgkin–Huxley equations,
but typically show a graded transition (Fig. 1a,b), the
width of which is quantified by a factor called ‘relative
spread’ (Fig. 1b). Later work by Verveen11,17 began the
process of quantifying neuronal noise sources that were
likely to contribute to relative spread. Building on this
work, Lecar and Nossal used techniques from statistical
physics to make a precise analytical linkage between
channel noise and relative spread (Fig. 1c)12,13. The cap-
stone of this effort was provided by an experimental
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The biophysical mechanisms underlying both electrical excitability
and synaptic transmission in neurons are noisy: responses to repeated
stimuli differ randomly from trial to trial, even in the absence of
adaptation or short-term synaptic plasticity. In the case of electrical
excitability, the primary source of inter-trial variance comes from the
fact that individual ion channels open and close randomly. The term
‘channel noise’ is used in this article to denote how particular responses
of populations of ion channels differ from the mean behavior, which
can be quantified by examining multiple recordings in response to
the same voltage-clamp stimulus. Figure Ia shows modeled voltage-
clamp responses of a population of 1800 noisy Hodgkin–Huxley 
K+ channelsa,b (single-channel conductance 5 20 pS; Vm 5 240 mV; 
T 5 68C). The average K+ conductance (7.6 nS) is shown by the broken
lines; fluctuations about that average value are shown for five inde-
pendent simulations. Experimental data such as those simulated
here can be characterized mathematically and used to examine the
effects of channel noise under non-voltage-clamped conditions.

Noise from synaptic processes is more complex than channel noise,
because it arises from multiple sources. Among the potentially impor-
tant sources of synaptic noise are the fundamentally probabilistic
nature of quantal release, the random nature of diffusion and chemical
reactions within the synaptic cleft, and the unpredictable responses
of ligand-gated ion channels. Another significant source of variance in
the synaptic signal received by the postsynaptic neuron comes from
the firing patterns of presynaptic neurons, which often show random
behavior. Realistic quantification of synaptic noise requires in vivo
intracellular recordings. Figure Ib shows simulated synaptic noise,
generated by a population of 1000 independent inputs, each of which
fires randomly with average firing rate 10 spikes/s. Each presynaptic
spike generates a conductance change with rising time constant 0.1 ms,
falling time constant 1 ms. Synaptic events are represented using a
Poisson-distributed quantal model, with a mean number of released
quanta equal to 10 and single-quantal conductance changes of 10 pS.
The mean value of the synaptic conductance (dotted lines) is 9.1 nS.

Synaptic noise is believed to be the dominant factor that limits
neuronal reliability under many circumstancesc–f, but channel noise
might make important contributions under some circumstances. For
example, conditions of summation of many independent excitatory
inputs without counterbalancing inhibitory inputs might make synap-
tic variance relatively lowg. Alternatively, conditions under which a
population of less than 105 voltage-gated channels has a crucial role
in determining thresholdh can make the spike generation process
particularly noisy. Finally, the effects of channel noise in limiting
reliability can be enhanced when the frequency content of synaptic
input does not match preferred firing ratesi,j.
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Box 1. Sources of electrical noise in neurons

(a) Channel noise (b) Synaptic noise

1 nS

3 ms
trends in Neurosciences

Fig. I. Simulated biological noise. Five independent examples of stochastic con-
ductances generated by simulated voltage-gated ion channels (a) and synaptic
processes (b). The average steady-state conductance is shown by the broken line
in each trace.
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demonstration by Sigworth that channel noise is suf-
ficient to account for non-deterministic neuronal
thresholds18.

Computational approaches to tackle this problem
began around 1980, when researchers gained access to
modern computer-processing power. To our knowledge,
the first such effort was performed by Skaugen and
Walløe (Fig. 1e), in a study that is remarkable for its
completeness15. Additional studies have concluded
again and again that channel noise affects the dynam-
ics of neuronal systems, even when the number of
channels involved exceeds 10 000 (Refs 14,19–25). Inter-
spike-interval histograms for the stochastic Hodgkin–
Huxley equations are exponential with a refractory
period (Fig. 1f). Intervals show no dependence on past
events, either in the case of spontaneous14,16 or driven26

activity. Imparting voltage-gated channels with the
‘memory’ of how long they have been closed or open can
induce long-term trends in interspike-interval statistics16.

Several factors help to account for the surprisingly
large effects of channel noise in modeled neurons. First,
diminution of the CV of a given conductance with
increasing N decays only proportionally to N21/2 (Eqn 3).

Second, contributions of channel noise often come at
relatively hyperpolarized potentials with correspond-
ingly low probabilities of opening24. Under these con-
ditions, the CV associated with a given conductance 
is large. (Note that CV → ` as p → 0.) Third, random
openings of Na1 channels at potentials that are close
to resting potential depolarize the cell, which further
increases the probability of opening of these chan-
nels14,25. Thus, the regenerative ‘positive feedback’ phe-
nomenon that leads to action-potential generation
also serves to amplify the effects of random openings
of Na1 channels.

Reliability in response to time-varying stimuli

Most early work focused on responses of neurons to
pulses or step changes in direct current (DC). More-
recent work has examined responses to repeated pres-
entations of fluctuating stimuli, usually single exam-
ples of a filtered, pseudo-random signal. This approach
has the advantage that the stimuli in question are real-
istically broad in their frequency content. However, the
broad-band approach has the disadvantage that it can
be difficult to interpret data sets that contain mixtures
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Fig. 1. Channel noise gives rise to uncertainty in threshold. (a) Responses of a node of Ranvier from frog sciatic nerve to repeated stimulation at
threshold intensity (defined as the current magnitude that gives a probability of suprathreshold response of 0.5) are shown. Eight sweeps are super-
imposed. The interstimulus is 2 s and its duration is 5 ms. (b) A typical plot of estimated probability of response versus normalized current mag-
nitude for a nerve fiber. Threshold defined as in (a). Relative spread (RS), a measure of the width of the curve, is obtained from fitting the func-
tion 20.5{1 1 erf[(I% 2 50)/RS]}, where I% is current pulse amplitude (as a percentage of threshold) and 

is the so-called error function. (c) Predicted probability of response versus stimulus amplitude for nodes of Ranvier of four sizes. Relative spread is
proportional to NNa

21/2, where NNa (the number of Na1 channels) is determined by the size of the patch of membrane simulated. This method of
scaling allows one to change the level of noisiness while leaving all other factors constant. (d) Sample plots of stochastic Hodgkin–Huxley models at
rest. As NNa is increased, the model becomes less prone to spontaneous activity; for NNa.20 000 the model is silent at rest, as is the deterministic
Hodgkin–Huxley model. (e) Plots of firing frequency versus applied current from stochastic and deterministic simulations of squid giant axon. Firing
rate changes more gradually with applied current as the number of channels decreases, as does relative spread (data not shown). (f) The normalized
interspike-interval (ISI) histogram for a stochastic Hodgkin–Huxley model with no applied current (NNa 5 600). Interspike-interval statistics resemble
those of a memoryless process with exponentially distributed intervals and a refractory period (indicated by the low number of short intervals). (a) Adapted,
with permission, from Ref. 11, (b) adapted, with permission, from Ref. 10, (c) plotted from equations derived in Refs 12,13, (d) adapted, with
permission, from Ref. 14, (e) adapted, with permission, from Ref. 15, and (f) adapted, with permission, from Ref. 16.
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of qualitatively different responses to short stimulus
sequences of different magnitudes27. Recorded and simu-
lated responses to filtered white noise24,28,29 show reli-
ability that depends on the degree of fluctuation in
the input signal, with high reliability corresponding to
large fluctuations. Reliability also varies with frequency
content of the input signal24,30. In particular, neurons
fire most reliably in response to stimuli with significant
frequency content that matches their expected firing
rate in response to the DC component of the input31,32.
The effect of frequency content of fluctuating signals
on reliability is exemplified by the data in Fig. 2.

Channel noise in oscillatory neurons

Recent work has included studies of cells with more-
complex electrophysiology than that of the squid giant
axon. For example, stellate neurons of the mammalian
medial entorhinal cortex (MEC) exhibit both action po-
tentials, which are generated by a fast Na1 conductance
and delayed rectifier K1 conductance, and slow sub-
threshold oscillations, which are generated by a persis-
tent (non-inactivating) Na1 conductance and very slow
opposing conductance33–35. The persistent Na1 conduc-
tance is generated by a few thousand channels25 and is
the major noise source in these cells (with the possible
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Fig. 2. Stimulus frequency content affects neuronal reliability. Superimposed responses of a
buccal motoneuron from Aplysia californica to repeated presentations of fluctuating current
stimuli with different frequency content are shown (from the work of Hunter and colleagues32).
The four stimuli were broadband (a); band-reject, with the excluded frequencies near the pre-
ferred firing frequency of the neuron corresponding to the direct current (DC) level of the stim-
ulus (b); band-reject, with the excluded frequencies below the preferred firing frequency of the
cell (c); and DC (d). Calculated levels of reliability (RA, RB, RC, RDC) are shown for each case.
Reliability is highest in response to stimuli that include frequency content close to the preferred
firing frequency of the cell. Reproduced, with permission, from Ref. 32. 

Stochastic ion channels are typically represented as memoryless
chemical reactions with transition rates that depend instantaneously
on membrane potentiala. The simplest such description would be a
two-state system:

where a(V) and b(V) are the voltage-dependent transition rates. Two
modeling methods have been used for modeling systems of stochastic,
voltage-gated ion channels. In the first, the states of individual gating
particles or ion channels are tracked with either a varying or constant
timestep, Dt. The current-balance equation is integrated over Dt. States
of each channel are updated according to the appropriate probability
functionsa. This process is repeated for the length of the simulation.
This method is conceptually simple and very accurate, as long as the
random-number generator is adequate and Dt is small compared with
the speed of fluctuations in membrane potential or channel state.
(A clear and concise review of the complex subject of random-number
generators is given by Press and colleaguesb. A basic tenet to bear in
mind is that default random-number generators typically perform
poorly.)

In practice (data not shown), Dt must be very small (~1 ms) to
simulate events in spiking neurons accurately, probably because state
transitions in Na+ channels are very rapid. The first method requires
a significant amount of ‘bookkeeping’ to track the state of each
channel or particle. More importantly, this method is inefficient:
even for a population of N ion channels with only two states, this
method requires generation of N random numbers and several logical
comparisons per time step.

In the second method of modeling stochastic neuronsc,d, efficiency
is increased by taking advantage of the presumed independence and
memoryless nature of individual ion channels. In this method, the
programmer keeps track not of the states of each channel but rather
the total number of channels in each state. The time interval Dt until
the next state transition is drawn from a probability function repre-
senting all possible transitions. The system of differential equations
is integrated over Dt. The identity of the event is established and the
channel counts are updated accordingly, then the next state transi-
tion time is selected. For a set of N channels governed by Eqn 1, the
algorithm is simple:

(1) Specify initial values of V, the number of open channels No, and
the number of closed channels Nc 5 N 2 No.

(2) Calculate the effective rate for the next state transition, 
l 5 (Nca 1 Nob).

(3) Generate two random numbers r1 and r2, uniformly distributed
between 0 and 1. The time of the next state transition is:

(4) Integrate the entire set of differential equations from current
time t to new time t 1 Dt.

(5) Choose Reaction 1 (a channel closing) if Noa>r2l. Otherwise,
choose Reaction 2 (a channel opening). Update No and Nc.

(6) Go to Step 2.

For more-complex channel-gating schemes, the algorithm operates
by similar principlesd,e. This second method is more computationally
efficient than the first because only two random numbers are needed
per timestep, even for channels with very complex rate equations.
The accuracy of the second method depends on generation of high-
quality random numbers, as does the accuracy of the first method.
The variable time step Dt should be kept sufficiently small so that
membrane potential (and hence transition rate constants) do not
change much during a given timestep. In practice, this constraint is
usually met automatically, because even systems that consist of small
numbers of channels switch states very frequently.

Other methods have been proposed that rely on a Gaussian approxi-
mation of channel-noise termsf. These methods have not yet been im-
plemented and tested in the literature for stochastic neuronal models.
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exception of synaptic noise, which is not prominent
in vitro but might be much more conspicuous in vivo).

MEC stellate cells can be described adequately using
a one-compartment cellular model with a stochastic
representation of the persistent Na1 conductance (see
Ref. 25 and Box 2 for details) and deterministic elements
for the other three nonlinear conductances25 (some
results are shown in Fig. 3a,b). Modeled and experimen-
tal results match best for N ~5000. These results imply
that neurons with small numbers of channels are more
noisy and more excitable, and that these characteristics
can be used to estimate channel numbers in stochastic
neuronal models.

In addition to increasing excitability, intrinsic chan-
nel noise can alter neuronal dynamics in more-complex
ways. Figure 3c shows color-coded ‘maps’ of the range
of dynamical behaviors exhibited by the MEC model
over a large parameter range. The x- and y-axes represent
the sizes of the slow K1 and persistent Na1 conductances,
respectively. The three maps represent behavior of the
deterministic model, along with stochastic models of
two different noise levels. The presence of channel noise
alters the dynamical behaviors that a given model can
exhibit. In particular, the MEC model generates sub-
threshold oscillations and action potentials most readily
for only intermediate noise levels (N 5 4800).

Channel numbers and cellular economy

In determining optimal channel numbers (not to
mention channel locations), neurons face several com-
plex constraints, some of which are conflicting. First,
channels of opposing action must be incorporated into
the membrane in the correct densities and proportions
in order to achieve the appropriate electrophysiological
properties. A striking example of this phenomenon is

shown in Fig. 4, which contains histograms that repre-
sent the probabilistic distributions of resting membrane
potential for Xenopus oocytes containing high (Fig. 4a)
and low (Fig. 4b) densities of voltage-gated K1 channels.
High channel densities yield a stable value of resting
potential, which is determined by the activation and de-
activation kinetics of the channels36. With low channel
densities, activation and inactivation properties of the
channels interact to produce large fluctuations in resting
potential36. Second, axonal-conduction velocities vary
as a function of channel densities. In non-myelinated
axons, for example, the theoretical relationship between
conduction velocity and Na1-channel density is bell-
shaped, with a peak value near the measured density
found in the squid giant axon37,38. Third, channel num-
bers are related intimately to neuronal reliability, which
must have an important role in constraining coding
schemes. Fourth, large channel numbers imply a large
energetic investment, not only because of the cost of the
proteins, but also because large ionic currents imply a
greater accumulation of ions and thus increased demand
on ion pumps. The energetic cost per action potential or
per ‘bit’ of information can be considerable39, making
this constraint potentially extremely important. Indeed,
it has been suggested that anoxia-tolerant animals 
use reduced channel numbers in order to keep oxygen
demand low40. How nerve cells deal with the deli-
cate balancing act of reliably coding information on a
tight metabolic budget is a topic that merits further
investigation.

Future directions: experimental and theoretical

The evidence that channel noise affects neuronal
dynamics is intriguing, but more research is needed.
Experimentally, three recently developed methods
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Fig. 3. Channel noise increases excitability and allows a broader repertoire of behavior in models of entorhinal cortical neurons. (a) Colored traces show simulated
responses to modest depolarization, with N, the number of persistent (non-inactivating) Na1 channels (shown on the left), varied from 1200–76 800. Changes in N were
effected by changing the size of the piece of membrane simulated, leaving all factors except the level of channel noise unchanged. For N 5 1200, the model cell fires action
potentials (truncated); for larger values of N, the cell exhibits noisy subthreshold oscillations but no action potentials. The black trace shows experimental current-clamp data
at the same mean potential (254 mV). (b) Power spectra of the traces in (a) [colors are the same as those used in (a)]. Spectra are the average power from a series of 14
short-time, 1024-point fast Fourier transforms (FFTs), calculated from a data trace of 3 s duration. Data windows were shifted 512 points for each iteration of the short FFT.
For each data segment, the mean potential was subtracted away and a Hamming window was applied. (c) Maps of qualitative behavior as a function of the maximal values
of the persistent Na1 conductance (g–Na2) and slow K1 conductance (g–K2) for three model types. Changes in g–Na2 or N were effected by changing the size of the membrane area
that was simulated, thus leaving all other aspects of the model unchanged. Behavior was mapped by applying currents of 0–3 mA/cm2 and measuring, on individual responses,
the ratio of alternating current (AC) power to total power and the probability of spike generation per subthreshold cycle. The AC power-ratio threshold for subthreshold
oscillations was 1.4 3 1024, equivalent to a 1 mV sinusoid superimposed on a membrane potential of 260 mV. The threshold for reliable spiking was a probability of
0.1 per cycle. The color-coded regions represent five types of qualitative behavior over the range of direct current (DC) levels. Region 1 (dark blue) represents models that are
silent for all levels of DC current injection. Region 2 models (yellow) are silent at resting potential and generate subthreshold oscillations with depolarization, but do not
generate action potentials. Models from Region 3 (red) replicate the varied behavior seen in electrophysiological recordings; they are silent at rest, generate subthreshold
oscillations with moderate depolarization, and generate action potentials at higher levels of depolarization. Region 4 (green) contains models that are silent at rest and spike
with depolarization, but do not generate subthreshold oscillations at any level of depolarization examined. Finally, models in Region 5 (light blue) fire spontaneously. With
too little noise (left panel), the model almost never generates subthreshold oscillations. With too much noise (middle panel), subthreshold oscillations (yellow) and spikes
(light blue) are prominent, but physiologically relevant Region 3 behavior (red) is rare. With N 5 4800 (right panel), the noise level is appropriate to allow a wider range
of behaviors. In particular, this value of N and associated noise level give reasonably robust Region 3 (red) behavior (silence, subthreshold oscillations and spiking for one
point in parameter space) that matches physiological data. Adapted, with permission, from Ref. 25.
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should allow the effects of channel and other noise
sources to be studied directly. First, the correlation of
single-channel events and spike initiation, recorded
under cell-attached patch-clamp, is an ingenious and
powerful technique for examining the effects of single-
channel events at the whole-cell level41–43. Second, ion-
channel expression systems (for example, Xenopus
oocytes) allow experimentalists to compare quanti-
tatively the response properties of cells with measur-
ably different numbers of voltage-gated channels. This
approach has been exploited to study the relationship
between channel numbers and the stability of resting
potential (Fig. 4)36. Third, elaborations of the dynamic-
clamp technique44 might allow researchers to examine
the effects of well-controlled, artificial noisy conductance
sources in the living cell45.

In the struggle to understand the implications of bio-
logical noise sources, neurobiologists would be wise to
recognize that theoretical results from physics and math-
ematics have much to offer. For example, results from
stochastic differential equations and statistical mechan-
ics have been applied successfully to the analysis of neur-
onal noise sources on several occasions12–14,46. Another
promising avenue of research would involve extending
the pioneering work of Laughlin and colleagues39 in
order to understand the relationships between channel
density, information content and metabolic cost.

In parallel with experimental and theoretical efforts
to quantify channel noise, there should also be efforts
aimed at exploiting its presence for practical gain. Box 3
describes early efforts to use channel noise as a poten-
tially useful surrogate for synaptic noise in cochlear
implants.

Concluding remarks
Electrical noise from voltage-gated ion channels is

invariably present and measurable. Together with noise
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Channel noise in neurons, a seemingly esoteric topic of study, could
have practical implications in improving the performance of cochlear
implants, widely used devices that mitigate severe hearing loss by
electrically activating the deafferented spiral gangliona. Under normal
conditions, release of neurotransmitter from inner hair cells (IHCs)
is stochastic, with a high rate of spontaneous release. Spontaneous and
driven activity in auditory nerve fibers are known to be noisy and
uncorrelatedb–d; the noisy release process is likely to be a significant
contributor to these properties. By contrast, electrically stimulated
auditory nerve fibers in patients with hearing loss lack spontaneous
activity and have driven responses that are largely deterministic and
correlated statistically across the populatione. The lack of sponta-
neous activity might contribute to the tinnitus commonly reported
in people with sensorineural hearing lossf. Insufficient independence
of activity in auditory nerve fibers could also rob the electrically
stimulated auditory system of distinct coding advantages offered by
statistically independent populationsg,h.

In attempts to generate noisy, statistically independent responses
in electrically stimulated auditory nerve fibers, one intriguing line
of research relies on the only natural source of stochasticity that
remains in the deafferented, electrically stimulated system: channel
noise from voltage-gated ion channels in auditory nerve cellsi. Under
current electrical-stimulation protocols used in cochlear implants,
this noise is masked. However, both computational simulations and
compound-action-potential recordingsj indicate that high-frequency
(5 kHz) electrical stimulation can ‘amplify’ channel noise and create
responses in a population of auditory nerve fibers that closely resem-

bles those normally produced by the IHC synapse. High-frequency
stimulation might provide a way to induce statistically independent
spontaneous and driven activity, and thus enhance performance in
cochlear implants.
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Fig. 4. A significant number of K1 channels is necessary to stabilize
membrane potential in expression systems. Amplitude histograms of
‘resting’ membrane potential, obtained from current-clamp recording of
inside-out patches in Xenopus oocytes that contain Shaker K1 channels.
Channels were modified to eliminate fast inactivation, but still exhibited
slow inactivation. In patches with high channel density [(a), N ~5000)],
membrane potential was relatively stable at a value that could be deter-
mined analytically from voltage-clamp data and knowledge of leak char-
acteristics. Slow inactivation properties of K1 channels are unimportant
in determining resting potential. In patches with low channel density
[(b), N ~20], membrane potential is unstable and dependent on slow
inactivation of K1 channels. Modified, with permission, from Ref. 36.
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from synaptic sources, it must be considered in any con-
ceptual model of the nervous system. Noise in the nerv-
ous system might have a number of roles. For example,
biological noise almost certainly constrains coding
accuracy in many neuronal structures4,47. It might
expand the repertoire of dynamic behaviors of some
neurons24,25, and enhance signal detection under some
circumstances48. Changes in noise level, which are
attributable to temperature or electric-field gradients,
can lead to detectable changes in the firing patterns of
multimodal sensory cells49,50. Finally, noise can improve
the performance of artificial neuronal networks
designed to solve specific optimization problems (for
example, simulated annealing) by helping the system
escape from local minima51.

The results reviewed in this article are specific exam-
ples of a more-widespread phenomenon: the role of
noise in nonlinear biological systems. Effects of noise
seem particularly likely to be found in sub-cellular sig-
naling pathways, including those involved in second-
messenger systems and regulation of gene expression,
because these systems include a relatively small num-
ber of constituent molecules that interact nonlinearly.
The implications of noise in normal and pathological
cellular biology have only begun to be explored52–54. The
broadening of our knowledge of electrical fluctuations
should also contribute to this new field of cellular
biology.

Selected references
1 Von Neumann, J. (1958) The Computer and the Brain, Yale

University Press
2 Durbin, R. et al. (1989) The Computing Neuron, Addison–Wesley
3 Barlow, H. (1995) The neuron doctrine in perception. In The

Cognitive Neurosciences (Gazzaniga, M.S., ed.), pp. 415–436, MIT
Press

4 Rieke, F. et al. (1997) Spikes: Exploring the Neural Code, MIT Press
5 Traynelis, S.F. and Jaramillo, F. (1998) Getting the most out of noise

in the central nervous system. Trends Neurosci. 21, 137–145
6 Koch, C. (1999) Biophysics of Computation. Information Processing

in Single Neurons, Oxford University Press
7 Sakmann, B. and Neher, E. (1995) Single-Channel Recording, Plenum

Press
8 Liebovitch, L.S. and Todorov, A.T. (1996) Using fractals and

nonlinear dynamics to determine the physical properties of ion
channel proteins. Crit. Rev. Neurosci. 10, 169–187

9 Hille, B. (1992) Ionic Channels of Excitable Membranes, Sinauer
Associates

10 Pecher, C. (1939) La fluctuation d’excitabilite de la fibre nerveuse.
Arch. Int. Physiol. Biochem. 49, 129–152

11 Verveen, A.A. and Derksen, H.E. (1968) Fluctuation phenomena
in nerve membrane. Proc. IEEE 56, 906–916

12 Lecar, H. and Nossal, R. (1971) Theory of threshold fluctuations
in nerves. I. Relationships between electrical noise and fluctuations
in axon firing. Biophys. J. 11, 1048–1067

13 Lecar, H. and Nossal, R. (1971) Theory of threshold fluctuations in
nerves. II. Analysis of various sources of membrane noise. Biophys. J.
11, 1068–1084

14 Chow, C.C. and White, J.A. (1996) Spontaneous action potentials
due to channel fluctuations. Biophys. J. 71, 3013–3021

15 Skaugen, E. and Walløe, L. (1979) Firing behavior in a stochastic
nerve membrane model based upon the Hodgkin–Huxley equations.
Acta Physiol. Scand. 107, 343–363

16 Lowen, S.B. et al. (1999) Fractal gating in ion channels generates
fractal firing patterns in neuronal models. Phys. Rev. E 59,
5970–5980

17 Verveen, A.A. (1960) On the fluctuation of threshold of the nerve
fibre. In Structure and Function of the Cerebral Cortex (Tower, D.B.
and Schadé, J.P., eds), pp. 282–288, Elsevier

18 Sigworth, F.J. (1980) The variance of sodium current fluctuations
at the node of Ranvier. J. Physiol. 307, 97–129

19 Clay, J.R. and DeFelice, L.J. (1983) Relationship between membrane
excitability and single channel open–close kinetics. Biophys. J. 42,
151–157

20 DeFelice, L.J. and Isaac, A. (1992) Chaotic states in a random world:
relationship between the nonlinear differential equations of
excitability and the stochastic properties of ion channels. J. Stat.
Phys. 70, 339–354

21 Strassberg, A.F. and DeFelice, L.J. (1993) Limitations of the Hodgkin–
Huxley formalism: effects of single channel kinetics on trans-
membrane voltage dynamics. Neural Comput. 5, 843–855

22 Rubinstein, J.T. (1995) Threshold fluctuations in an N sodium
channel model of the node of Ranvier. Biophys. J. 68, 779–785

23 DeFelice, L.J. and Goolsby, W.N. (1996) Order from randomness:
spontaneous firing from stochastic properties of ion channels. In
Fluctuations and Order (Millonas, M.M., ed.), pp. 331–342, Springer

24 Schneidman, E. et al. (1998) Ion channel stochasticity may be
critical in determining the reliability and precision of spike timing.
Neural Comput. 10, 1679–1703

25 White, J.A. et al. (1998) Noise from voltage-gated ion channels
may influence neuronal dynamics in the entorhinal cortex. 
J. Neurophysiol. 80, 262–269

26 Rubinstein, J.T. et al. (1999) Pseudospontaneous activity: stochastic
independence of auditory nerve fibers with electrical stimulation.
Hear. Res. 127, 108–118

27 Pei, X. et al. (1996) Noise-mediated timing precision from aperiodic
stimuli in an array of Hodgkin–Huxley neurons. Phys. Rev. Lett.
77, 4679–4682

28 Bryant, H.L. and Segundo, J.P. (1976) Spike initiation by trans-
membrane current: a white-noise analysis. J. Physiol. 260, 279–314

29 Mainen, Z.F. and Sejnowski, T.J. (1995) Reliability of spike timing
in neocortical neurons. Science 268, 1503–1506

30 Nowak, L.G. et al. (1997) Influence of low and high frequency inputs
on spike timing in visual cortical neurons. Cereb. Cortex 7, 487–501

31 Jensen, R.V. (1998) Synchronization of randomly driven nonlinear
oscillators. Phys. Rev. E 58, R6907–R6910

32 Hunter, J.D. et al. (1998) Resonance effect for neural spike time
reliability. J. Neurophysiol. 80, 1427–1438

33 White, J.A. et al. (1995) A bifurcation analysis of neuronal
subthreshold oscillations. Biophys. J. 69, 1203–1217

34 Alonso, A. and Llinás, R.R. (1989) Subthreshold Na1-dependent
theta-like rhythmicity in stellate cells of entorhinal cortex layer II.
Nature 342, 175–177

35 Klink, R.M. and Alonso, A. (1993) Ionic mechanisms for the
subthreshold oscillations and differential electroresponsiveness of
medial entorhinal cortex layer II neurons. J. Neurophysiol. 70, 144–157

36 Marom, S. et al. (1996) Effects of density and gating of delayed-
rectifier potassium channels on resting membrane potential and
its fluctuations. J. Membr. Biol. 154, 267–274

37 Adrian, R.H. (1975) Conduction velocity and gating current in the
squid giant axon. Proc. R. Soc. London Ser. B 189, 81–86

38 Hodgkin, A. (1975) The optimum density of sodium channels in
an unmyelinated nerve. Philos. Trans. R. Soc. London Ser. B 270,
297–300

39 Laughlin, S.B. et al. (1998) The metabolic cost of neural information.
Nat. Neurosci. 1, 36–41

40 Lutz, P.L. and Nilsson, G.E. (1997) Contrasting strategies for
anoxic brain survival – glycolysis up or down. J. Exp. Biol. 200,
411–419

41 Fischmeister, R. et al. (1984) Channel currents during spontaneous
action potentials in embryonic chick heart cells. The action potential
patch clamp. Biophys. J. 46, 267–271

42 Johansson, S. and Århem, P. (1994) Single-channel currents trigger
action potentials in small cultured hippocampal neurons. Proc.
Natl. Acad. Sci. U. S. A. 91, 1761–1765

43 Taddes, A. and Bean, B.P. (1999) Stochastic firing of isolated
tuberomamillary nucleus neurons: correlation with unitary channel
events. Biophys. J. 76, 211

44 Sharp, A.A. et al. (1993) Dynamic clamp: computer-generated
conductances in real neurons. J. Neurophysiol. 69, 992–995

45 Reyes, A.D. et al. (1996) In vitro analysis of optimal stimuli for
phase-locking and time-delayed modulation of firing in avian
nucleus laminaris neurons. J. Neurosci. 16, 993–1007

46 Tuckwell, H.C. and Rodriguez, R. (1998) Analytical and simulation
results for stochastic FitzHugh–Nagumo neurons and neural
networks. J. Comput. Neurosci. 5, 91–113

47 Zador, A. (1998) Impact of synaptic unreliability on the information
transmitted by spiking neurons. J. Neurophysiol. 79, 1230–1238

48 Collins, J.J. et al. (1995) Stochastic resonance without tuning.
Nature 376, 236–238

49 Braun, H.A. et al. (1994) Oscillation and noise determine signal
transduction in shark multimodal sensory cells. Nature 367,
270–273

50 Braun, H.A. et al. (1997) Low-dimensional dynamics in sensory
biology 1: thermally sensitive electroreceptors of the catfish. 
J. Comput. Neurosci. 4, 335–347

51 Kirkpatrick, S. et al. (1983) Optimization by simulated annealing.
Science 220, 671–680

52 Felber, S. et al. (1996) Stochastic simulation of the transducin GTPase
cycle. Biophys. J. 71, 3051–3063

53 McAdams, H.H. and Arkin, A. (1997) Stochastic mechanisms in
gene expression. Proc. Natl. Acad. Sci. U. S. A. 94, 814–819

54 Morton-Firth, C.J. et al. (1999) A free-energy-based stochastic
simulation of the Tar receptor complex. J. Mol. Biol. 286,
1059–1074

J.A. White et al. – Channel noise RE V I E W

Acknowledgments
The authors thank
David Pinto and
James J. Collins for
helpful comments
regarding a previous
version of this article.
Work in the authors’
laboratories related
to this review was
supported by 
The Whitaker
Foundation (separate
awards to J.T.R and
J.A.W.) and the
National Institutes
of Health (separate
awards to A.R.K.,
J.T.R. and J.A.W.).


